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Abstract Monoamine oxidase (MAO) is an enzyme of
major importance in neurochemistry, because it catalyzes
the inactivation pathway for the catecholamine neurotrans-
mitters, noradrenaline, adrenaline and dopamine. In the last
decade it was demonstrated that imidazoline derivatives
were able to inhibit MAO activity. Furthermore, crystallo-
graphic studies identified the imidazoline-binding domain
on monoamine oxidase B (MAO-B), which opens the pos-
sibility of molecular docking studies focused on this binding
site. The goal of the present study is to identify new poten-
tial inhibitors for MAO-B. In addition, we are also interested
in establishing a fast and reliable computation methodology
to pave the way for future molecular docking simulations
focused on the imidazoline-binding site of this enzyme. We
used the program ‘molegro virtual docker’ (MVD) in all
simulations described here. All results indicate that simplex
evolution algorithm is able to succesfully simulate the
protein-ligand interactions for MAO-B. In addition, a scor-
ing function implemented in the program MVD presents
high correlation coefficient with experimental activity of
MAO-B inhibitors. Taken together, our results identified a
new family of potential MAO-B inhibitors and mapped
important residues for intermolecular interactions between
this enzyme and ligands.

Keywords Imidazoline sites . Molecular brain . Molecular
docking .Molegro virtual docker .Monoamine oxidase .
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Abbreviations
PD Parkinson's disease
IMAO Inhibitor of monoamine oxidase
MAO Monoamine oxidase
MAO-A Monoamine oxidase A
MAO-B Monoamine Oxidase B
FAD Flavin –adenine - dinucleotide
VS Virtual screening
2-BFI 2-(2-benzofuranyl)-2-imidazoline
RMSD Root mean square deviation
PDB Protein data bank
EA Evolutionary algorithm
PLP Piecewise linear potencial
E intermol Energia intermolecular
E intramol energia intramolecular
RO5 Lipinski’s rule of five
ρ Coeficiente de Spearman
IUPAC International Union of Pure and Applied

Chemistry
IC50 Half maximal inhibitory concentration

Introduction

Monoamine oxidase (monoamine: oxygen oxidoreductase
(deaminating), EC 1.3.3.4, MAO) is a flavin-dependent en-
zyme that catalyzes the oxidative deamination of important
amine neurotransmitters, such as dopamine, noradrenaline,
and serotonine. For a recent review see [1]. These important
protein targets are found in the external mitochondrial
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membrane as two isoenzymes, MAO-A and MAO-B, that
exhibit differing substrate and inhibitor specificities [2–8].
MAO-B is selective for dopamine whereas MAO-A is selec-
tive for serotonin and noradrenaline. Inhibition of MAO-A
and B causes amplification of the existing amounts of mono-
amine neurotransmitters in the brain for the therapy of psycho-
neurological disorders. Several MAO-B inhibitors are currently
useful in Parkinson’s disease [5, 9, 10].

Several molecular docking studies have been performed
on MAOs [11–21], none of them was focused on the imi-
dazoline binding site on MAO-B, also known as I2 binding
site [22–26]. Although experimental evidence suggested the
importance of this binding site for inhibitory activity against
MAO-B [27–30], that could be used for molecular docking
studies. Recent X-ray crystallographic and biochemical
studies [31] revealed the structural basis for an interesting
potentiation of MAO-B inhibition due to the presence of a
ligand in the substrate binding site and 2-(2-Benzofuranyl)-
2-imidazoline (2-BFI) in the imidazoline site. Analysis of
the structure of the 2-BFI complex with tranylcypromine-
inhibited MAO-B showed that the presence of tranylcypro-
mine modifies the positioning of Leu199 in the entrance of
the active site, generating a closed conformation for MAO-
B. This form allows tight binding of the reversible inhibitor
2-BFI with 1000 fold increase in the affinity [31]. Further-
more, this study suggested that a new generation of MAO-B
inhibitors could be obtained focusing on the entrance of the
active site, the imidazoline binding site, which motivated the
present study.

MAO-B is composed of three structural domains, as
shown in Fig. 1. Briefly, the substrate domain is composed
of residues Phe 103, Pro 104, Trp 119, Leu 164, Leu 167,
Leu 171, Phe 168, Ile 199, Ile 316 and Tyr 326. The flavin
domain is composed of the flavin group covalently bound to
Cys397. There is also a transmembrane domain, composed

by alpha helices. The substrate entrace is close to the inter-
section of the enzyme with mitocondrial surface [9, 31].

Molecular docking simulation (MDS) is a computational
methodology that provides automatic means to determine
the conformation of a proteins-ligand complex. Considering
protein-ligand interactions, it is possible to visualize that this
computer simulation is equivalent to the key-and-lock prob-
lem, where the lock is the protein and the key the ligand.
The main objective of the MDS is to adjust the position of
the ligand (key) in the protein (lock). In a typical MDS it
generates many potential positions for the ligand in the
protein, known as poses. Consequently, it is necessary to
have a model, which will allow evaluation of all possible
positions for the ligand, and then choose the best position.
This model of selection could be expressed as an energy
function [32] or a scoring function [33–38] not necessarily
related to an energy function.

Here we applied molecular docking search engines and
empirical scoring functions implemented in the program
molegro virtual docker [39–41] to evaluate the interaction
of MAO-B with ligands. The goals of the present paper are
the following: 1) To establish a fast and reliable molecular
docking protocol to identify ligand position in the
imidazole-binding site on MAO-B. 2) To apply this docking
protocol to predict ligand-binding affinity, and 3) to identify
new potential MAO-B inhibitors, with focus on the
imidazoline-binding site. We describe an optimized molec-
ular docking protocol that was able to predict ligand posi-
tion with RMSD lower than 0.3 Å when compared with the
crystallographic structure. This docking protocol was able to
predict inhibitory activity, further validating this docking
protocol. Application of this reliable protocol was able to
identify new potencial MAO-B inhibitors. Their intermolec-
ular interactions and structural features are discussed.

Materials and methods

Re-docking and cross-docking

MVD [39–41] is one of the available commercial programs
for docking simulations based on evolutionary algorithms.
Recent evaluation of MVD strongly indicates that it is
capable of superior overall performance when compared
with AUTODOCK, SURFLEX, FLEXX and GOLD
[39–42]. MVD brings implementation of four search algo-
rithms to find ligand position and orientation. They are:
MOLDOCK optimizer (implementation of differential evo-
lution algorithm), MOLDOCK simplex evolution (imple-
mentation of downhill simplex method), iterated simplex,
and iterated simplex (with ant colony optimization) [39–41].

In this study, prior to MDS, all atom types and the bond
orders were corrected to both ligand and monoamine

Fig. 1 The crystal structure of human MAO-B. Structure of mono-
amine oxidase in complex with FAD and 2-(2-benzofuranyl)-2-imida-
zoline (PDB access code: 2XCG)
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oxidase B structures using the MVD automatic preparation
function [39]. For each complex, the hydrogen atoms were
added and the MVD default partial charges were assigned.
Compounds ZINC00154386 and ZINC00057128 are cat-
ionic molecules and ZINC02565373 is anionic. All others
compounds are neutral. This automatic preparation of the
structures was also applied to all ligands used in the test set
and virtual screening (VS) (described below). Molecular
cavities were detected using the grid-based cavity prediction
algorithm. All water molecules were deleted from the orig-
inal PDB files for re-docking and cross-docking (described
below) simulations. Re-docking simulations of the ligand 2-
BFI against the imidazoline binding site on MAO-B were
carried out using the atomic coordinates of 2XCG [31].

In addition to re-docking, a procedure called "cross-dock-
ing" can also be used to further validate a docking protocol.
Considering that several crystallographic structures are
available for the same protein, cross-docking can be applied.
This procedure involves docking a number of ligands found
in a variety of crystal structures of a protein identical to a
single rigid protein crystallographic conformation [43].
When a protein target presents major conformational
changes upon ligand binding, a significant difference is
expected between the crystallographic and docked struc-
tures. In the cross-docking simulations we used 10 crystal-
lographic structures (PDB access codes: 1OJ9, 2VRL,
2VZ2, 2XFN, 2XFO, 2XFP, 2XFQ, 2XFU, 3PO7,
2VRM). Re-docking and cross-docking are the initial stages
of all VS projects. The overall scheme is shown in Fig. 2,
and it has been fully described elsewhere [44]. Briefly,
phase 1 is focused on selection and validation of a docking
protocol, as described above. Phase 1 ends when an ade-
quate protocol is found (selection criterion RMSD<2.0 Å).

It should be pointed out that the RMSD criterion is depen-
dent on the number of torsion angles, and a less demanding
criterion may be adopted for re-docking of a ligand with a
number of torsion angles higher than 10 [40, 41]. Once a
docking protocol is chosen we select a small-molecule da-
tabase to be used in the screening (phase 2). In phase 3, we
start docking simulations for each ligand present in the
selected database. During a typical docking simulation sev-
eral orientations can be obtained for each ligand. Here we
selected the one with the lowest scoring function. The
scoring function used by MVD improves accuracy of scor-
ing functions with a new hydrogen bonding term and new
charge schemes. Four scoring functions are implemented in
the MVD, including MOLDOCK score and PLANTS score
[39]. These two functions offer grid-based versions, in
which hydrogen bond directionality is not considered.

To further improve docking accuracy, a re-ranking scoring
function was used. This function identifies the most promising
docking solution from the solutions obtained by the docking
algorithm [39]. Re-rank score includes the docking scoring
function terms, such as a sp2-sp2 torsion term and a Lennard-
Jones 12-6 potential. The re-ranking score function is compu-
tationally more expensive than the scoring functions (MOL-
DOCK and PLANTS scores) used during the docking
simulation but it is usually better than the docking score
function at determining the best pose among several poses
originating from the same ligand and also for evaluating
ligand-binding affinity. Furthermore, due to the stochastic
nature of the search algorithm, we applied the same VS
protocol 16 times, running the best docking protocol in 16
computers in parallel (coarse-grain parallelism) and only con-
sidered a compound as a hit if it is present in the majority of
the VS results. In the present work, all simulations were
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Fig. 2 Flowchart of virtual
screening process (modified
from [44]). Phase 1 is focused
on selection and validation of a
docking protocol. Phase 2 is
the selection of a small-
molecule database to be used in
the screening. In phase 3, we
start docking simulations for
each ligand present in the se-
lected database. In phase 4,
analysis of the best scored
ligands are carried out
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performed on 16 iMac computers (Intel Processor Core 2 Duo,
2.66 GHz, 2 GB SDRAM DDR3 1066 MHz).

After identification of potential inhibitors by MDSs, the
best scored ligands can be submitted to the web server FAF-
Drugs [45] in order to assess physical-chemical properties
(phase 4). These are key properties that need to be considered
in early stages of the drug discovery process, and FAF-Drugs
allows users to filter molecules via simple rules such as
molecular weight, polar surface area, logP and number of
rotatable bonds. The ligands were filtered following the Lip-
inski’s rule of five (RO5). RO5 advocates that drugs which
present oral bioavailability, in general, follow: molecular
weight less or equal to 500, LogP less or equal to 5, number
of hydrogen bond donor groups less or equal to 5 and number
of hydrogen bond acceptor groups less or equal to 10 [46].

To confirm the ability of the MVD program to evaluate
the inhibitory activity of a ligand bound to MAO-B we
selected 13 MAO-B inhibitors for which experimental in-
formation for their inhibition activity (IC50) was available.
This information was retrieved from the BRENDA [47]. To
be consistent in our comparisons, all data retrieved from
BRENDA database were checked to confirm they all belong
to the same biomolecular and expression systems (MAO-B).
We used the program ACD/ChemSketch from Advanced
Chemistry Development (Toronto, Canada)(http://www.
acdlabs.com/products/draw_nom/) to generate inhibitor
structures and submitted them to the automatic preparation
of the structures of MVD (described above). From now on
this ensemble of structures will be referred to as test set.

In order to identify new commercially available MAO-B
inhibitors we focused our VS efforts on the SIGMA library.
This small-molecule library presents 15,186 compounds.
We downloaded these compounds in the structure-data file
(SDF) format from the ZINC database [48–50]. The atomic
coordinates for the structure 2XCG [31] was used as a target
for VS and test set studies, water molecules and ligands
were deleted from the structure. We used the best docking
protocol with re-ranking score function identified in phase 1
to evaluate binding affinity.

Results and discussion

Re-docking and cross-docking

One of the most important results derived from several appli-
cations of MVD program is the comparison of re-docking
simulations between MVD and other docking programs, such
as GOLD, FLEXX, GLIDE, and AUTODOCK [39–42].
These comparisons strongly indicated that the MVD is able
to obtain lower RMSDs in the great majority of the analyzed
crystallographic structures (re-docking simulations). In addi-
tion, MVD not only presents a better overall performance in

re-docking simulations, but it is also faster than AUTODOCK
[42], one of the first MDS program. These results demonstrate
that MVD is reliable; therefore, we used it in the present work.

Initially, a search for the best molecular docking protocol
was performed. The structure of 2-BFI in complex with
tranylcypromine-inhibited MAO-B was used for re-
docking simulations. The key criterion describing the qual-
ity of a MDS is the RMSD. In molecular docking applica-
tions, the best binary complex is the one closer to the
structure determined by x-ray crystallography. Analysis of
the re-docking results for the combination of four search
algorithms and four scoring functions (a total of 16 different
docking protocols) generated RMSD from 0.2 to 12.08 Å.
Table 1 shows the RMDS for all docking protocols. The best
results were obtained for the following search engines:
MOLDOCK SE, MOLDOCK optimizer, and iterated sim-
plex. Iterated simplex with ant colony optimization gener-
ated the worst RMSD (12.08 Å). The parameters for
docking, especially the search engine features, were opti-
mized by running several MDSs on the complex structure.
The following parameters and their combinations were var-
ied: radius of the docking sphere, number of runs, maximum
number of iterations, and maximum population size. The
optimized parameters for the docking are the following:

Scoring function

Empirical scoring function: Re-rank score (used for
ranking the MDS results)

Binding site

Origin: x050.63; y0161.17 and z031.34 Å
Radius: 10 Å

Search algorithm

Algorithm: MOLDOCK SE
Number of runs: 10
Constrain poses to cavity: Enabled

Parameter settings

Max iterations: 1500
Max population size050

Pose generation

Energy threshold: 100.00

Simplex evolution

Max steps: 300
Neighbor distance factor: 1.00 .

Figure 3 shows the docking sphere used in the re-docking
simulations. Since the combination of MOLDOCK SE and
re-rank score, generated very low RMSD (0.2 Å) we chose
this docking protocol and used it in all further MDSs. Cross-
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docking simulations for 10 MAO-B complexes using this
protocol generated RMDS from 1.45 to 1.80 Å, further
validating the present docking protocol.

Relationships between the MAO-B inhibition and re-rank
score

Predicting the ligand-binding affinity based on a static con-
formation of the ligand is a complex task. For example,
energetic contributions from solvent interactions and entropy
contributions are complicated to handle in the simplified
models used in MDS. While the re-rank score in MVD pro-
vides an approximation of the potency of the intermolecular

interaction, it is not calibrated in physical-chemical units and it
does not take intricate contributions (such as entropy) into
account. Even though the re-rank score might be successful in
ranking different poses of the same ligand, it might be less
successful in ranking poses of different ligands. So, to test
whether re-ranking score is able to predict ligand-binding
affinity we applied the best docking protocol to a test set of
13 ligands for which experimental information was available.

It is expected that scoring functions show a correlation with
inhibitory activity (IC50). To carry out comparisons we used
pIC50, which is the log (IC50), as shown on Table 2. Since there
is no direct significant relationship between the two datasets, we
have to calculate the Spearman’s rank order correlation coeffi-
cient to evaluate the statistical significance of the relationship
between these two independent variables (re-rank score and
pIC50). The equation for this correlation coefficient is as follows,

ρ ¼ 1�
6
PN

j¼1
r xj
� �� r yj

� �h i2

N3�N
; ð1Þ

where N is the number of pairs, 13 in our case, the variables r(xj)
and r(yj) are the rank of the pIC50 and the re-rank score of the jth
sample in the dataset [22].

Analysis of the Spearman’s rank correlation coefficient
for this dataset (Table 2) generated a ρ 0 0.8, which is higher
than the critical value at the 0.002 level of significance. It
implies that the re-rank score of MVD can be applied for
activity prediction.

Table 1 RMDS for all docking protocols implemented in the MVD program

Protocol Scoring functions Search algorithm RMSD (Å) RMSD (Å) RMSD (Å) RMSD (Å)

Sorting criteria MolDock
score

Rerank
score

HBond RMSD

1 MolDock score MolDock optimizer 1.61 0.20 1.61 0.20

2 MolDock score MolDock (simplex evolution) SE 1.61 0.20 1.61 0.20

3 MolDock score Iterated simplex 1.61 0.20 1.61 0.20

4 MolDock score Iterated simplex (ant colony optimization) 1.61 0.20 1.61 0.20

5 MolDock score [GRID] MolDock optimizer 1.56 1.56 1.56 0.27

6 MolDock score [GRID] MolDock (simplex evolution) SE 12.08 12.08 12.08 11.54

7 MolDock score [GRID] Iterated simplex 1.56 1.56 1.56 0.28

8 MolDock score [GRID] Iterated simplex (ant colony optimization) 1.56 1.56 1.56 0.27

Protocol Scoring functions Search algorithm RMSD (Å) RMSD (Å) RMSD (Å) RMSD (Å)

Sorting criteria Plants
score

MolDock
score

Rerank
score

RMSD

9 PLANTS score MolDock optimizer 1.60 1.60 0.23 0.23

10 PLANTS score MolDock (simplex evolution) SE 1.60 1.60 0.23 0.23

11 PLANTS score Iterated simplex 1.60 1.60 0.23 0.23

12 PLANTS score Iterated simplex (ant colony optimization) 1.60 1.60 0.23 0.23

13 PLANTS score [GRID] MolDock optimizer 1.54 1.54 0.21 0.21

14 PLANTS score [GRID] MolDock (simplex evolution) SE 1.54 1.54 0.21 0.21

15 PLANTS score [GRID] Iterated simplex 1.54 1.54 0.21 0.21

16 PLANTS score [GRID] Iterated simplex (ant colony optimization) 1.54 1.54 0.21 0.21

Fig. 3 Search space sphere (green) defined for molecular docking
simulations
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Furthermore, application of the best docking protocol to
simulate the interaction of 2-BFI with the structure of
Ile199Ala mutant of human MAO B (PDB access code:
2XFO) generated a re-rank score of −72.06, higher than
the re-rerank for 2-BFI in complex with tranylcypromine-
inhibited MAO-B (-86.57). Previously published study [31]
indicated that 2-BFI binds to the mutant enzyme weakly
with a Ki of approximately 58 μM, whereas 2-BFI binds to
tranylcypromine inhibited human MAO B with a Kd value
of 9 nM, which is nearly 1000-fold increase in binding
affinity for 2- BFI on tranylcypromine inhibition specifical-
ly observed in human MAO B. These experimental results
are in agreement with re-rank scores estimated with MVD.
Taken together these results indicate that this docking pro-
tocol can also be applied to evaluate the binding-affinity of
compounds identified in a VS study.

Virtual screening

VS is a computational approach used to identify potential
new inhibitors for a protein target for which the 3D
structure is available. It has been successfully applied to

identify a plethora of inhibitors [40, 41, 50]. Our focus
here is on the identification of new potential inhibitors
for MAO-B. Although previous VS studies have been
perfomed on the MAO-B [13–15]. There is no docking
studies using the combination of simplex evolution
search algorithm and MOLDOCK score. Furthermore,
this is the first VS study focused on the imidazoline-binding
site on MAO-B.

Application of the previously described docking pro-
tocol to a database with 15,186 compounds retuned as
best results 11 compounds, with re-rank score below −100.
Among these 11 compounds, two stand out, since they were
found among the best hits in 14 out 16 simulations. They are:
ZINC00154386 ( 3-(1,3-benzodioxol-5-yl)-5-piperidin-1-
ium-4-yl-1,2,4-oxadiazole ) and ZINC02387301 (5-[5-(5-for-
mylthiophen-2-yl)thiophen-2-yl]thiophene-2-carbaldehyde)).

We used filtering options of FAF-Drugs [45] to this set of
11 compounds, based on Lipinski’s rules [46]. A total of
eight compounds passed to this filter (Table 3) (Fig. 4), among
them the molecules ZINC00154386 and ZINC02387301. Re-
rank scores for these eight compounds range from −116.958
to −100.029.

Table 2 Comparison of IC50

values for various derivatives of
MAO-tested with interaction
energy for docking experiment

Ligand Moldock
score

Rerank
score

H bond
score

IC50
(mM)

Log(IC50)

Clorgyline −106.717 −85.5701 −1.6474 0.00042 −6.3767

cis-2,4,5-trimethoxypropenylbenzene −84.506 −50.7948 0 0.362 −3.4412

Eugenol methyl ether −78.6633 −66.0726 0 0.269 −3.57024

Deprenyl −69.503 −23.0131 0 0.0023 −5.6382

Isatin −60.6128 −51.2535 −2.5 0.008566 −5.0672

Eugenol −58.33 −1.279 −2.499 0.288 −3.5406

(1S,2S)-(+)-psi-ephedrine −56.2415 −28.2115 −3.42698 234 −0.6307

O-eugenol −53.8414 −19.5025 −0.9745 0.5 −3.301

4-Hydroxy-3-methoxybenzylamine −53.6122 729.994 −2.49674 0.382 −3.4179

(1R,2R)-(+)-psi-ephedrine −50.0494 12.047 −2.5 88 −1.0555

2-(aminooxy)-1-phenylethanol −48.1304 −14.2979 −1.9337 0.25 −3.602

2,6-dimethoxyphenol −46.6543 −9.57545 −0.6459 0.5 −3.301

2-methoxyphenol −45.5002 −37.1172 −6.0724 0.5 −3.301

Table 3 Physical-chemical
properties of ligands that fitted
the Lipinki's role of five after
analysis by FAF-Drugs

Ligand ZINC code Molecular
weight (Da)

Number of H
bond acceptors

Number of H
bond donors

XLogP

1 2387301 304.4 2 0 4.0

2 154386 274.2 3 1 1.8

3 2169849 347.3 5 4 0.2

4 644889 355.3 4 3 0.2

5 56610 337.3 5 4 −0.1

6 2565373 292.3 4 1 3.2

7 1724292 279.3 5 0 3.7

8 57128 267.3 1 2 2.0

3882 J Mol Model (2012) 18:3877–3886



C

D

G

A

B

E

H

F

Fig. 4 Molecular structures of
the top-scoring compounds
identified in the VS
protocol. a ZINC02387301. b
ZINC00154386. c
ZINC02169849. d
ZINC00644889. e
ZINC00056610 f
ZINC02565373 g
ZINC01724292
h ZINC00057128

Table 4 Intermolecular interac-
tions for the top-scoring ligands
selected in the VS procedure.
The presence of an X indicates
that the interaction occurs. HB
means hydrogen bonds and
VDW means van der Waals
contacts

Residues Ligands

HB ZINC02387301 ZINC00154386 ZINC02169849 ZINC00644889

Ser200 X X X

Try326 X X X

Ala325 X

Pro102 X

Thr201 X

Glu84 X X

Gln206 X

Gly101

Leu164

VDW

Pro102 X X

Phe168 X X X

Ile316 X X X X

Ile199 X X X X

Leu167 X X X X

Leu171 X X X

Leu88 X X X X

Gly101 X X

Phe103 X X

Trp119 X

Thr201 X

Ser200 X

Pro104 X

Thr314 X X

Tyr326 X

Leu164

Glu84

Ala325

Leu345

Thr202

J Mol Model (2012) 18:3877–3886 3883



Intermolecular interactions

In order to assess intermolecular contacts between the com-
pounds identified in the VS and the MAO-B we used the
program LIGPLOT [51]. Analysis of the intermolecular
interaction indicates key residues responsible for ligand
binding specificity. Intermolecular hydrogen bonds involv-
ing residues Tyr326 and Pro102. Van der Waals contacts are
present between the ligand and the residues Phe 168, Leu
164, Il 316, Il 199, Leu 171, and Leu 88. The importance of
the residues Leu88, Pro102 and Leu164 for intermolecular
interactions has been highlighted in a recent study [52]
where molecular dynamics simulations of MAO B in a lipid
bilayer were carried out. Theses simulations indicated that
the bilayer controls the accessibility of the imidazoline-
binding domain on MAO-B by the movement of two key
loops that form the active site entrance (residues 85–110 and
155–165). Furthermore, the molecular dynamics simulation
indicated the stability of the imidazoline-binding domain on
MAO-B [52]. Table 4 shows intermolecular interactions for
all eight compounds identified in the VS. There are no van
der Waals contacts closer than the sum of their van der
Waals radii, and the intermolecular hydrogen bonds follow
the criteria established in the LIGPLOT algorithm [51]. All
eight compounds present interactions with residues Ile316,
Ile199 and Leu88. Out of eight compounds, six show inter-
molecular interactions with residues Leu171, Leu167, and
Leu171. The residue Tyr326 is found in interactions with
ligands 1, 2, 3, 4, 5, 6 and 7, which strongly indicates the
importance of these residues for ligand specificity, as has been
suggested from the analysis of the crystallographic structure
of 2-BFI in complex with tranylcypromine-inhibited MAO-B
[31].

Conclusions

We have used simplex evolution algorithm to carry out
flexible docking search for prediction of MAO-B inhibitory
activities. The parameters for flexible docking were opti-
mized to allow us routine work. After that, cross-docking
simulations were performed with the imidazole-binding site.
We have calculated the rank correlation between the MOL-
DOCK score of the program MVD and the respective
MAO-B inhibitory activity. The calculated correlation coef-
ficients imply that the docking using the combination of
simplex evolution algorithm and MOLDOCK score is a
suitable technique for making qualitative predictions about
activity. At the same time, the results confirm the assump-
tion that there is a considerable relationship between the
IC50 and re-rank scores. All experimental information used
in comparison with scoring functions followed Michaelis–
Menten equation which describes a unireactant process in

which velocity is related to substrate concentration in either
a hyperbolic or linear way. A recent publication [53] dis-
cusses a novel analytical approach that offers a significant
improvement upon the use of the Michaelis–Menten equa-
tion for analysis of MAO kinetic data. Nevertheless, our
correlation analysis was based upon the classical model due
to the reduced number of MAO-B inhibitors (three inhib-
itors) investigated in this novel analytical approach [53],
which makes statistical analysis (Spearman’s rank order
correlation coefficient) difficult.

MAOs are protein targets for development of drugs to
treat many neuropsychiatric and neurodegenerative condi-
tions [9, 53, 54]. IMAOs are used in the treatment of PD
focused on MAO-B in particular (as a result affecting do-
paminergic neurons), as well as providing a substitute for
migraine prophylaxis [54]. Therefore, the development of a
new generation of MAO-B inhibitors is of great interest. We
have studied here the influence of key residues on ligand
interaction with MAO-B and attempted to predict new pos-
sibly active compounds. We have identified two compounds
(ZINC00154386 and ZINC02387301) with low re-rank
score. Both compounds present intermolecular interactions
involving residues Tyr326 and Pro102, as observed for the
crystallographic structure 2XCG [31]. Information obtained
in this study will be used for designing new MAO-B inhib-
itors and for additional work in the area of molecular dock-
ing simulations.
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